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ABSTRACT

FORTRAN computer subroutines stemming from requirements to pro-
cess state variable system equations for systems of high order are
presented. They find the characteristic equation of a matrix using
the method of Danilevsky, the number of roots with positive real
parts using the Routh~Horwitz alternate formulation, convert a state
variable system description to a Laplace transfer function using
the method of Bellinger, and evaluate that transfer functien and
obtain its frequency response. A sample problem is presented to
demonstrate use ¢f the subroutines.



E-8016

COMPUTER PROGRAMS FOR CALCULATION OF MATRIX STABILITY AND
FREQUENCY RESFONSE FROM A STATE-SPACE SYSTEM DESCRIPTION
by Robert C. Seidel

Lewis Research Center

SUMMARY

FORTRAN computer subroutines stemming frem requirements te pre-
cess state variable system equations for systems of high order are
presented. They find the characteristic equatien of a matrix using
the method of Danilevsky, the number of roots with pesitive real
parts using the Routh-Horwitz alternate fermulatien, convert a state
variable system description te a Laplace transfer functien using the
methed ef Bellinger, and evaluate that transfer function and obtain
its frequency response. A sample problem is presented te demonstrate
uge of the subroutines.

INTRODUCTIGN

High~speed digital computers have made matrix state variable
metheds for system analysis practical. But for large systems, the
required execution time and the cumulative effect of round off errors
make it increasingly impoertant to employ efficient algerithms.

FORTRAN subroutines resulting from requirements to handle large

systems are reported herein. In particular, they find the charac-
teristic equatien of a system matrix, test that equation fer the num-
ber of roots with positive real parts, cenvert a state variable

system description te a Laplace transfer function and evaluate the
transfer function at a given frequency tec obtain its frequency response.

The FORTRAN program fer ebtaining the characteristic equation of
a system matrix uses the method of Danilevsky, reference 1. The pre-
gram includes a Gauss pivetal element condensation scheme to somewhat
increase its accuracy. A competing methoed is that of Leverrier,
references 1 and 2. However, to compute the characteristic polynemial
the Danilevsky method is known te be more accurate, faster, and re-
quire less storage. The FORTRAN program for determining the stability
of the characteristic polynemial uses the Routh-Horwitz alternate
formulation method, reference 3. The FORTRAN program for obtaining
the system transfer function uses the method of Bellinger, reference 4.
This methed appears more reliable than the method ef Davisen, refer-
ence 5, which in certain cases is known te cenverge improperly
(ref. 4). However Davisen's transformation, which permits the output
to be an arbitrary linear combination e¢f the states, is used in



cenjunction with Bellinger's method. The inverse of this transfor-
mation is alse required, but is easily calculated in cloesed form.
Once the transfer function is obtained its frequency response is
easily calculated.

The FORTRAN listings and subroutine descriptions are presented
in the fellewing sectien. Equation symbols are defined in Appendix
A. TORTRAN symbels are defined separately for each program. A
sample problem demonstrating the use of the subroutines is described
in Appendix B.

COMPUTER PROGRAMS

Characteristic Equation

In subroutine BANSKY the characteristic equation of a matrix is
found by the method of Danilevsky, reference 1. The characteristic
equation of an nxn matrix A is an expansion of the determinant
equation

la = az| = -DPO" + 2111““1 +oeee +21) =0

where 1 1is the identity matrix and the pelynomial coefficients
sought are in the 21 vector. The Z1 vector ceefficients are
obtained in DANSKY through successive application of similarity
transformations which finally preduce the 2Z1 vector in the top row
of A. As noted in reference 1 the methoed allows use of a Gauss
pivotal element scheme te somewhat increase its accuracy. In DANSKY
this optien is implemented. The Gauss method performs similarity
transformations which interchange columns and rows of A to place the
element with the largest absolute value in pivet positioen. The
executien time for an 18x18 A matrix is about 0,35 sec (IBM-360-67 TSS
computer). DANSKY uses (as most of the programs) double precisien.
The time penalty for using double precisien is oenly about 0.02 sec

for the 18x18 matrix, One problem which eccurs with certain A matrices
when using DANSKY is that of expenent under or overflow. In such
cases the matrix A may be (time) scaled by multiplying each element

of A by a positive constant, r.  The characteristic polynomial of the
scaled matrix becemes

n-1l

n L -1 n
AR+ (211r)1 + + (Zlnr )

Fipure 1 i1s a description of the DANSKY calling statement transfer
variables. Figure 2 is a FORTRAN listing of DANSKY,



For comparisen with the Danilevsky method scme results obtained
with the Leverrier method are cited. For the same 18x18 matrix dis-
cussed earlier, the Leverrier program required 4.2 sec {(compared te
0.35 sec for the Danilevsky methed). Alse, two additional 18x18
double precision scratch sterage matrices are required for the
Leverrier method, and double precisien is required te obtain the same
accuracy achieved by DANSKY in single precision.

In DANSKY a call is made to subroutine POLMPY te multiply two
pelynemials., In certain cases the method of Danilevsky obtains the
characteristic equation coefficients in partially factored form and
the factors must be multiplied together to obtain the characteristic
equation. In DANSKY a call is made te POLMPY in all cases with one
of the pclynomials pessibly unity. Figure 3 is a descriptien of the
POLMPY transfer variables. Figure 4 is a FORTRAN listing of POLMPY.

Stability

The subroutine RHWTZ performs a stability test upon the charac-
teristic equation. It counts the number of roets with positive real
parts without actually finding them. A simple recursive algorithm
which is well sulted to machine computatien is used. Its description
is given in reference 3. The program is specialized in that it assumes
the leading pelynemial coefficient is unity as in the form returned
by DANSKY. The execution time for an eighteenth order polynemial is
about 0.007 sec., Figure 5 presents a description of the RHWIZ trans-—
fer variables and figure 6 presents a FORTRAN listing of RHWTZ,

For certain equations the test may fail if during the algorithm
executien a zero appears as a divisor term. In this case the number
of unstable roots is set to =1 and the message '"Test Failed M set to
-1" is osutput.

Transfer Functien
BOLLIN is a subroutine for converting a state variable matrix

differential equation inte an equivalent Laplace transfer functien.
The system equations censidered are

x = Ax +Bu, vy = Ctx

where x, B, and C are n vectors, A is an nxn matrix, and u and
y are input and eutput scalars. The following steps are taken to
obtain the system transfer function:



1, A call to subroutine DAVISO transforms the A and B system
matrices using the C vector se as to make the output y a state
variable in the transformed system, reference 5. The transformed
system is

% - * *
A¥ = tar~l, B* = 1B, and x* = Tx

such that
o k % *
X =AX +Bu

where T 1is the jdentity matrix except that the MC-th row is over-
written by the € vector. The integer MC 1is the positien of the
element of C with the maximum absolute value. The 1 matrix is
similar to inverses encountered in the proof of the Danilevsky method,
reference 1, and can be written down explicitly. The output x* of
the modified system is the MC-th modified state variable, Xyeo

2. The denominator polynemial Z1 (characteristic equatien) of
tge system transfer function is obtained by a call to DANSKY using the
A" matrix,

3. The numerator polynomial is obtained in two more calls te
DANSKY using Bollinger's method, reference 4. First, with the MC-th
column of A~ replaced by -B to obtain 22; then, with a matrix of
order {n-1) obtained by deleting the MC-th row and column from A
to obtain 23.

4, The numerator pelynomial is computed as Z4 = Z2 - sZ3.
5. The system transfer function y(s)/u(s) 1s Z4(s)/Z1(s).

Execution times found for various order systems were about 1.0 sec
for an eighteenth order, 2.7 sec for a twenty-sixth order, and 9.7 sec
for a forty-first order system. Figure 7 is a description of the
BOLLIN transfer variables. Figure 8 is a FORTRAN listing of BOLLIN.
Figure 9 is a description of the DAVISO transfer variables and figure 10
is a FORTRAN listing of DAVISQO, If the A matrix is time scaled by
multiplication by scalar r, the B vector and frequencies used to
evaluate the transfer functien should also be scaled by r. To handle
the more general case of multiple input, multiple output systems where
B and C are matrices, the program calling BOLLIN weuld start the
B and C matrices at the appropriate columns in the transfer variable
1ist to obtain the desired input/output relation, reference 5.



Frequency Response

The subroutine FRPOLY may be used to evaluate the Laplace trans-
form 24(s)/Z1(s) ratio of polynemials for a given frequency s = jw.
The evaluation is performed in double precision with the real and
imaginary parts of the powers of jw handled separately. Figure 11
is a description of the FRPOLY transfer variables and figure 12 is a
FORTRAN listing of FRPOLY. To evaluate a system frequency response
over a range of frequencies, multiple calls to FRPOLY would be made.

CONCLUDING REMARKS

Six subroutines: DANSKY, POLMPY, RHWTZ, BOLLIN, DAVISO, and
FRPOLY were presented and discussed. The chart shewn in figure 13
summarizes the flow from a state variable representation of a system
through the varicus subroutines. The major input and output relatiens
and alternate paths for various uses are noted.
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APPENDIX A
SYMBOLS
A system matrix, nxn
B Input vector; n
C output vecter, n
1 identity matrix, nxn

3 imaginary, \/CI

MC position of element in C with maximum abselute value

n gsystem order

r scaling factor

s Laplace variable, sec L

t time, sec

T transfermatien matrix, nxn
u input

b4 state variable vector, n

vy eutput

Z1 characteristic equation polynomial
Z? intermediate polynomial

Z3 intermediate polynemial

Z4 system numerator transfer functien polynomial

A root of characteristic equation
w frequency, hertz
Superscript:

denotes transformed variable

transpese



APPENDIX B

SAMPLE PROBLEM

4 third order sample problem demonstrating the combined use of the
subroutines is described next. The problem studied is the transfer
functien

y(s) _ s+ 6 s‘+ 6

ule) (2 L35 4 9)(s + 4) 83 + 782 + 21s + 36

In phase variable form the state matrices are

0 1 0 0 6
A= 0 0 1|, =0}, C=|1
1 0

-36 ~21 =7

Figure 14 is a FORTRAN listing of the sample problem MAIN program.
First the A, B, and C matrices are output. Next after a call te BOLLIN,
the deneminator and numerator poelynomial coefficients are eutput. Then,
after a call te FRPOLY, the transfer function evaluated at one hertz is
- putput, and finally, after a call to RHWTZ, the number of unstable reots
is output,

Figure 15 ig a liﬁting of the pregram output. The deneominater 3
polynomial is 5~ + 78° + 215 + 36 with the unity ceegficient of s
understoed, The numeEator pelynomial is -2,220E-16 s~ + s + 6. The
coefficient of the s term should actually be zero but due te limited
numerical precision is slightly in error. The transfer functien is
evaluated at one hertz (5 = j2II) and has a real part of =-.03048 and
an imaginary part eof -.01142 or an amplitude of .03255 at -159.5
degrees. There are no roots of the denominator polynemial with pesitive
real parts. '

If enly a test of system stability were desired then it would net
be necessary to use BOLLIN., Instead DANSKY could be called te ebtain
the characteristic equation fellowed by a call te RHWTZ., BOLLIN is
organized such that it computes the denominator transfer functien ZI1
each time it is called. To save gomputations the user may wish to modify
this if the transformed matrix A 1s known te remain comnstant for a
particular set of B and/er C changes.



DANSKY
Banilevsky
PURPOSE: Te obtain the characteristic equation of a
square real matrix
USAGE: CALL DANSKY (A, X, Y, Z, N, NMAX)

Where A - square real matrix, order NxN
X - scratch vector, order N
Y - scratch vector, order N
Z - characteristic polynemial vector, order N
N - order of A
NMAX - dimension of A in calling pregram > N
DOUBLE DIMENSION: A must be deuble dimen-
siened (NMAX, NMAX) in
calling program
DOUBLE PRECISION: A, X, Y, and Z must be
double precisien in calling
program

NOTES: (1) A is destroyed In obtaining Z

{(2) The Z characteristic equation is
returned in the form

A+ Z

n
A+ 2 1 o

n-1
lk + | + Zn_

Subroutines called: (1) POLMPY

FIGURE 1.-DESCRIPTION OF SUBRCUTINE DANSKY TRANSFER VARTABLES
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€ COMPUTE THE CORFFICIFNTS OF.THF CHAPARTINISTIC ENUATION
SUBROUTINE NANSKYCA,Y,Y,Z,N,HHAX)
DIMENSION ACHPAY,1),%(1), 2(1} Y(1)
NOUBLFE PREGISION sun A, quF n|vo'r K, X, Y, 2
NM=N
10 Ni1aNN-1
IF(NM1,EC.0) GO TO 125
no 120 =1, MML
NMEaNN=)
| PYT=NMI
HMIML1=NME =1
MMIPL1=NHt+1
€ FIND MAXIFUM ELFMENT IN PIVDT ROY
KMAX=A(HMIPL, NI
{F(NHIML, AT.OB) 6O TN 15
1F(XPAX,FEN,0,) 60 TN 10
f0 TR SN
15 no 20 #ls1,MNMIM]
K=NME=K1
[FCABSISHAL (ACHNMIPT, K) )L LELADSOXIAMNY) RO TA 20
XMAX=A(HNMIPL, K)
_ 1PYT=K
20 COMTIMUF
IECXMAY EO,N,) GD TO 140
IFCIPYT.EQNIELY A0 TO 50
€ SIMULARITY TRAMSFORM €0 PIVOT ELEMENT |8 THE HAXIMUN
no 30 Jel,HMIP]
SAVE=A(J,IPVT)
ACY, IPYTI=ACS, NMY)
30 ACJ, ML ImSAVE
nn o0 JJ1,MM
SAVE=AC(IPYT, d)
ACIPVT ,J)mA{NMI,J)
40 ACHMI, J)esAvE
€ A UPDATE FAUALS A » M{SUR Nal)
50 RIVOT=1, /ACNMIRL, NML)
no 80 ¥Kwl,NM
IF(K,EN.NMI) RO TO 20
CKa=A{NMIPL, K)#P|VOT
neg 70 =1, NM!
10 A(!I,KJﬁA(I1,K)*A(II NMI)*PR
80 CONTINUE
no RS 1Hi=1,MMI
85 ACT1,NME ) mA{1] NMI)=RIVOT
£ MULT H(qu3 Nwl) INVFRQP TIMES A PPATER.
RO 110 Ylal MM
SUMmf},
DO 90 Kel, NMI
an SUMESUM*A(NH!RI K)eACK, 11}
O T TN Af e 10k
{E€H) L EQ,NMN) AA TO 108
SUM=§ UM#MMNH I1+1)
PECUE LT NME) ﬂﬂ TA 100
IECLT L BA,NN) AD TO 160
SHM=SUM¢A(NH!BI 1141}

100 ACNMI, |1 )=8IA
110 eONTINUE
120 GONTINUE
125  NMIP1=1
c  ELEMENTA BF A SET EAUAL T8 LAST ELEMENTS IM RAW WMIP1 BF =A
140 DA 150 J=NMIP1, NN

NXmd=HM| P1#l
150 X{NX)==A(NMIP1
0 F o At UACTARE 6F eHARACTERISTIG ERUSTIAN
190 NYsNeNN

- BB 206 J=1,HY

1o Ytuy=zl)

BALL POLIPYLX,Y,Z, NN, N, NYBNX)
g REBUEE SYSTEM ARNER

NH=NNNY

TECHN, BT, 8) AR TO 16

REFHIAN

END

FEGUEE ZaBFQRTHAN LIETEHG ?@R EﬁﬁgﬁﬂTiﬁﬁ BAEEEY
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POLMPY
Polynemial Multiplication
PURPOSE: To multiply twe pelynemials X*Y

CALL POIMPY (X, Y, Z, NX, NY, NZ)
Where X - first polynomial, vector

Y - second pelynomial, vector

Z - returned preduct polynemial, vector
NX - order of X
NY - order of Y
NZ = NX + NY (order of Z) returned

NOTE: (1) leading coefficient of highest
power is assumed to be one, l.e.,

for X:

NX NX-1 . ...
AT+ KA + + Koy

DOUBLE PRECISION: X, Y, and Z must be
double precision in the

calling program

FIGURE 3.-PESCRIPTICN OF SUBROUTINE POLMPY TRANSFER VARIABLES



=t~

O MILTIPLY X+YsZ (LEANING POLYNOMIAL COCFEICIENTT ASSUNED IMITY)
SUBROUTINE POLMPY(X,Y,Z,NX,NY NI
DIMEHSION X(1),¥(1),Z(1)
DOUBLE PREFISION X,Y,Z,YJ
NZmWX+MyY .
€ IF NX=0 MEANG POLY X=1;THEREFORE Z=Y
IF(NX.6T.N) GO TN 6

no & Jel,NY
4 Z(d)=Y(J)
8O T0 40
€ IF NY=D MEANS PALY Y=1;THERFFORE Z=X
6 IF(NY.AT.0) @0 T0 15
- pD 8§ J=1,MX
8 200 =x(J)
GO TO 40

£ START MULTICLIRATION RY MAVINA Z=YwTesNX
15 po 20 J=1,M :

YJ=Y(J)

IF(J.GT.NY) Yd=0,
20 Z(J)=Yd
C MULTIPLICATION LOOP

DO 30 K=1,MX

ZORY=ZKI+X(K)

pn 25 J=1,MY

KPJ=K+i
25 ZOKPYI=Z (™I I+Y (I =X (KD
30 CONTINUE
40 RETURM

END

FIGURE 4.-FORTRAN LISTING FOR SUEROUTINE POLMPY



PURPOSE:
USAGE:

Where
RESTRICTION:

12

RHWTZ

ROUTH - HURWITZ ALTERNATE FORMULATION

To compute the number of roots with pesitive real
parts of a pelynomial equation

CALL RHWTZ (C,N,M)
C - coefficients of polynemial equation, vectoer
N - equatioen order

M -~ number of roets with pesitive real parts
(M set to -1 if test fails due to attempted
division by zero)

The C vector starts with the second coefficient,
ag the first 1s assumed unity; that is:

+ ety ves 4 g
n-l

1 A+ Cn =0

1
NOTE: C is destreyed upen return

DOUBLE PRECISIOGN: C musat be double precision
in the calling proegram

PROGRAM OUTPUT: "TEST FAILED M SET TO -1" out-
put if divisien by zere is
attempted

FIGURE 5.-DESCRIPTICGN OF SUBROUTINE RHWTZ TRANSFER VARIABLES
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/3~

ROLITH HOMUTTZ ALTERHATE FORMULATION STABILITY TEST
SUBROUT INE RUMTZ{C, N, M)
. DOUBRLE PRECISION C, CNMI COEF,CHNM2Z
DIMENSION P(l)
HM1aN~1
M=0
C. PROVIDE FNR CASE N=0, 1 oR- 2
IE(N.LE, ) GO TO 30
IF(N=-2) 4,8,10

[e]

L IE(C(1).LT.0.) Mal
A0 TO 30
8 CNM1el,
. 60 TN 25
10 CIF(E(1).EN.N,) 60 TO 35
COEF=1,/C(1)

€ START ALGORITHM Ln0P
no 20 K=2,NM1’
IF(COEF.LT.N) MaM+l
no 15 Je=K,NM1,2
15 CCJ)=C{J) =COEF*r(J+1)
1F(C(K).EN.D,) GO TO 35
© L COEF=C(K-1)/0(K)
20 COMTINUE
¢ FINISH REMAINING 2 NN ORDRR POLYMOMIAL
© CNM2=C(N=2)
26 IF(CNM2#C({NM1) ,LT.0,) M=M+l
23 [EC(C(MML)*C{N).LT,.0,) M=M+]
30  RETURM
35 WRITE(E,L5)
kS . FORMAT(1X,23HTEST FAILED M SET Tn -1)
Ma=1
G0 TO 30
END

. F;GURE 6.~FORTRAN LISTING FOR SUBROUTINE RHWTZ
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BOLLIN
Bellinggr
PURPOSE: To obtain a system transfer functien freom system
o matrix equations
USAGE: CALL BOLLIN (A,AS,B,X,Y,Z1,Z2,23,N,NMAX)
Where A - gystem matrix (NxN)

AS - seratch matrix (NxN)

B - system input vector (N)

C - system output vecter (N)

X - scratch vector (N)

Y - scratch vector (N)

Z1 - transfer function denominater, vector (N)
Z2 - transfer function numerator, vector (N)
Z3 - scratch, vector (N)

N - system corder

NMAX - dimension of A and AS in calling preogram > N

DOUBLE DIMENSION: A and AS must be double
dimensioned (WNMAX, NMAX)
in calling program

DOUBLE PRECISION: AS must be double precisien
in calling pregram

NGTES: (1) A is destroyed in cobtaining Z1 and Z2
(2) The Z1 and Z2 are returned as in

= n n_l .0-0
z1 = 2" + 217 4 .T;ln

n—l o a8
z2 2211 + +22n

SUBROUTINES CALLED: (1) DAVISO
(2) DANSKY

FIGURE 7.-DESCRIPTION OF SUBROUTINE BOLLIN TRANSFER VARIABLES



-/5-

€ CONVERT X(NOT)wAX+ml,YeC(TRANSPOSE}X TO TRANSFER
C FUNATION Y/U=22/Z1 RATIO OF POLYNOMIALS
SUBRNUTINE BOLLINCA,AS,B,C,%,Y,21,22,7%, 5, AX)
NIMENSION A(MMAX,1),AS(NMAX,1),B(1),0{1),X(1),Y {1}
RIMENSTAN Z1(1),7Z2(1),Z3(1)
NOURLE PRECISION AS,X,Y,Z1,22,23
£ TRANSFORH Z=TX TO MAKF OMTPUT A STATE
CALL DAVISO(A,R, T, N, NMAX, MC)
€ SAVE A USING AS
Do 20 K=1,N
DO 10 J=1,N
10 ASCK,J)=A(K,J)
20 CONT | NUE
C  FIND DEMN fIIAR EOM COEF'S
CALL DANSKY(AS,X,Y,Z1,N,NMAX)
€ SET AS=A ARAIN AND OVER WRITE A{K,MC) FOLUMM WITH -B
DO 4O Kel, N
DO 30 J=1,N
30 ASCK,J)=A(K,J)
50 AS(X,MC)==8(K)
€ FIND FIRST PART OF NIM CHAR EON
CALL DAMSKY(AS,X,Y,Z2,N,NMAX)
C SET AS=A AGAIN; COLLAPSE MC ROM AND COLUMN
NM1=N=1
DO 60 Kal,MNM1
Kl=K
AFCK.GE M) KlsK+l
DO 50 J=1,NM1
Jlmyg
1F(J.GE.MC) Jl=Jg+l
50 AS(K,d)=A(K1,J1)
60 CONT I QUE
€ FIND SEROND PART OF NUM CHAR EQOM
CALL DANSKY(AS,X,Y,Z3,NM1,NMAX)
C SUBSTRACT FIRST PART FROM SECOND PART
00 160 J=1,NM1
100 Z2(J)=22(J)-Z3{J)
RETURN
END

FIGU:llE 8.;FdRTRAN LISTING FOR SUBROUTINE BOLLIN



16

DAVISO
Davisqn
PURPOSE: Transform system te make output a state varilable
USAGE: CALL DAVISO (A,B,C,N,NMAX,MC)
Where ' A — input system matrix Whiih upen return is

transfermed system TAT

B -~ input system vector which upoen return is
transformed input vecter TB

C = system cdutput wvector
N - order of A
NMAX - dimension of A in calling program > N

MC

pesition of maximum element in C vector

DOUBLE DIMENSION: A must be double dimensicened
(NMAX, NMAX) in calling pregram

PROGRAM OUTPUT: If all N elements of C are zero
' the message "All elements of C
are zero" is eutput and the pro-
gram is put in PAUSE

FIGURE 9,-DESCRIPTIGN OF SUBROUTINE DAVISO TRANSFER VARIABLES
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TRAMSFORM X(DOT)=AX+BU, YaC(TRANSPOSE)X USING Z=T¥ SUCH
THAT ¥ 15 A STATE VARIARLE OF Z(DOT)=TATUINVERSF)+T2U

SUBRDUTINE NAVISO(A,RB,C,M,NMAX, MC)

DIMENSIOM A(MMAX,1),B(1),C(1)

NOUBLE PRECISEON SUM
FIND MAX ELEDENT IN £ AS €(MC)

CM=Q.

MC=Q

po 5 J=1,H

FFCARS{C{JI) LT.CM) RO TO 5

CH=ARS(C(J))

MCmdJ

CONTINUE

IF(ME,GT.0) GN TO 10

WRITE(E,7)

FORMAT(1X,26HALL FLEMENTS OF € ARE ZER0O)

PAUSE ‘
PREMULT A BY T CHANRES MG ROU ONLY

no .17 K=1,M

SUMaQ.

DN 15 J=1,H

SUM=SIIM+NRLE(C(JI*A(J,K))

A(MC, K)=aSUN
POST MULT A BY T INVERSE

FOR O HOT = MC: ALK, J)=sA{K,J)-A(K, MCY=C(J)/R(MC)

PtyoT=1,/C(MC)

Do 30 J=1,N

IF(J.EQ.MC) GO TG 30

Do 25 K=1,N
ACK,J)sACK,J)=ALK, MCY*C{J) *PIVOT
CONTINUE
FOR J=MC: ALK, MCI=A{K, MCI/CEMC)

DO 35 K=1,M
ALK, MCY=A(K,MCY«PIYOT

PRE MULT B BY T CHANRES B(MC) ONLY
SUMeD, '
N 37 J=1,N
SUM=SUM+NBLE(C{J)}*B(J))
B{MC)=SUN
RETURM
END

FIGURE 10.~FORTRAN LISTING FOR SUBROUTINE DAVISO
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FRPOLY
Frequency Response of‘Polynqmials

PURPOSE: Te evaluate system transfer functien poelynomials
' to obtain system frequency response

USAGE: CALL FRPOLY .(21,Z2,HZ,G,AMP,PHA,N)
Where Z1 ~ denominator polynomial, vector order N
22 - numerater polynoemial, vector order N
HZ - frequency in hertz

G ~ gystem transfer functienm Z2(jHZ)/Z1(JHZ)
evaluated at radian frequency HZ*2n

AMP - transfer functien amplitude, |G|

PHA -~ transfer function phase, ;G degrees

N - order of Z1

COMPLEX: G must be declared complex in the
calling program

DOUBLE PRECISION: 21 apd Z2 must be declared
T double precisien in the
calling program

NOTES: the Z1 and Z2 must be in the form:

71 = A" + 21 A"l 4 e 4z
: 1l n

z2 = zaaml

1 + ene +zzn

FIGURE 11.-DESCRIPTION OF SﬁBR@UTINE FRPOLY TRANSFER VARIABLES
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€ EVALUATE TRANSFER FUNGTION Z2(S)/21(S) FNP S=5,2P*HIe)
SUBROUTINE FRPOLY(Z1,Z2,HZ,G,AMP,PHA,!)
DIMENSINN Z1{1),22(1)
POUBLE PRECISINY AT,HJ, SUMIR, SUMLI, SUM2R, St21,221,272,21,72
COMPLEX 5, SUM1,SUM2
NH1=N~1
SUMIR=Z1(N}
SuMli=0,
SUM2R=Z2{N)
SUM21=0,
6T=1.
‘ VJ=MZ#6,2R31853
1 KKk=2
IF(NM1.EQ.0) GO TO 40
DO 35 K=1,NM1 .
NMKaN-K
GT=AT*i
ZZ1=Z1(NMK)+aT
272=22(NMK) *GT
GO TO (5,10,3,8),KK
3 Z71=-2I1
222=-272
5 SUM1R=SUMLR+ZZ1
SUM2R=SUIMIR+ZZ2
60 TO 30
8 271=-2121
772-272
10 SUML1=SUMT 14271
SUM21=5UM21+272
30 KK=KK+1
1F(KK.GT.4) KKel
35 CONTINUE
€ ADD OM S=«N TO DEM SUM1 S -
40 SUM1=CMPLX(SNAL (SUMIR), SNGL{SUML 1) )+GT*ld#» (CHPLX(0,,1.) ) w*(KK~1)
SUM2=CMPLX(SHAL (SUMZR)Y, SNGL(SUM21))
G=SUM2 /SHM1
AMP=1ABS(f)
PHA=ATANZCAIMAG(G),REAL(G))*57.29578
RETURN : ‘
END

FIGURE 12,-FORTRAN LISTING FCR SUBROUTINE FRPO'LYi
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SYSTEM STATE VARTABLE EQUATIONS

x = Ax + Bu, y = Ctx

A,B;C A
1A,B,C 'threel
DAVISO © BOLLIN DANSKY
<
* _% .
A LB J’ ‘ times i PANSKY
'é———§‘
transfer POLMFY
function -characteristic
equation
FRPOLY
| \L | | z
frequency '
response \L
stability

FIGURE 13.-FLOW CHART FOR FGKRTRAN SUBROUTINES
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G SAMPLE PROELEM MAIN PROGRAM
DIMENSTOR A(3,3),AS(3,3),B(3),0(3),21(3),22(3),Z3(3),X(3),Y(3)
DOUBLE PRECISIOK AS,Z1,Z2,Z3,X,Y
COMPLEX G
DATA A/0,,0.,-36.,1.,0.,-21.,0,,1.,-7./
DATA B/0.,0.,1./,C/6.,1.,0./,HZ, N, NRAX/L., 3,3/
WRITE(6,1) (CAL1,J),d=1,H), =], )

1 - FORMAT(' A=',/,1P3E12.3,/,1P3E12.3,/,1P3E12.3)
WRITE(G,2) (B(J),d=1,HK)

2 FORMAT(' B VECTOR=',1P3E12.3)
WRITE(G, 3) (C{J),J=1,NY

3 FORMAT(' ¢ VECTOR=',1P3E12.3)

CALL BOLLINCA,AS,B,0,X,Y,21,22,7Z3, N, HEAX)
WRITE(6,10) (Z1{J),Jd=1,N)

10 FORMAT{' DENOMINATOR=',1P3£12.3)
WRITE(6,20) (Z2(J),J=1,H)

20 FORHAT(' NUMERATOR=',1P3E12,3)
CALL FRPOLY(Z1,Z2,HZ,G,ANP, PHA N)
WRITE(6,30) HZ,G,AMP,PHA

30 FORMAT(' AT',F4.1," HERTZ THE TRAMSFER FUNCTION =',-
1 1P2E12.3,/,' AMPLITUDE=',1PE12.3,' PHASE=',1PE12.3)
CALL RHWTZ(Z1,N,HM)
WRITE(6,40) M

40 FORMAT{' NUMBER OF UNSTABLE ROOTS=',i5)

STCP
END

FIGURE 1Tk, ~ FORTRAN 1listing for sample problem main program

Anm
0.000 1.000E 00 0,000
0.000 0,000 1.000E nQ
-3.600E 01 -2.100f 01 =7.000F 00
B VECTOR= 0,000 0.000 1.000L no

C VECTOR= 6.000E 0N 1.000E 00 0.000

DENOMINATOR= 7.000E 00 2,100E 01 3.600E 01

NUMERATOR= =-2.220E-16 1.000E QO 6.,000E 00

AT 1.0 HERTZ THE TRANSFER FUNCTION = <3,048E-02 ~1.142E-02
AMPLITUDE= 3.255E-02 PHASE= =1.595E 02

NUMBER OF UNSTABLE ROOTS= 0

FIGURE 15.-SAMPLE PROBLEM FROGRAM OUTPUT



